<u> </u>	
M Fa Sl Sc Ac	enoufiya University aculty of Engineering nebin El-Kom econd Semester Exam. ademic Year: 2015-2016 Department: Basic Science of Engineering Year: Preparatory year Subject/Code: Physics 1B (BES022) Time Allowed: 3 hours Date: 6/6/2016
A	nswer the Following Questions: (75 marks)
	ع (((یجب إجابه دل جزء منفصِل عن الاخر. الإمتحان 5 استله موزعه علی 3 ورقات))) Part 1
Q	uestion 1: (12 marks)
1)	Describe and explain the magnetic force on a charged particle in a uniform magnetic field.
b)	Determine the periodic time of a charged particle is moving circular motion in a uniform magnetic field.
:)	A positive charged particle has mass 2×10^{-24} gm and charge 1.6×10^{-19} C is sent into a region of uniform magnetic field oriented perpendicular to the charged particle's path. The charged particle travels at a speed 8×10^{10} cm/sec in a circular path of radius 2 m. What is the magnitude of magnetic field?
Q	uestion 2: (13 marks)
1)	Determine and explain the magnetic force between two parallel wires have length L, carry a current $I_1 \& I_2$ and a distance "d" between them.
b)	Determine the relation between magnetic permeability of a material inserted in a solenoid and magnetic permeability of free space.
c)	Prove that the magnetic energy density stored in an inductor is directly proportional to the square of magnetic field.
d)	Determine the frequency of oscillation in <i>LC</i> -circuit.
Q	Part 2 nestion 3: Choose the correct answer(s), (25 marks) أكتب الاجتيب رات المحمد بيدون كنائية السيوال اكتت اليوضيع المنائيست ليشتب إحتيار التك
a)	An electric dipole is placed freely in a region known to contain a uniform electric field. After an adequate time, the electric dipole moment (n)
	i) points parallel to the field lines. ii) points normal عمودى to the field lines. v) rotates anticlockwise عمودى to the field lines. iii) remains constant.
b	An electron (e) enters a region of uniform electric field (E), after a short time (t)
	it stops momentarily الجُملة (الجُملة). Chose the correct statement(s) (الجُملة (الجُملة) of the following
	 i) The acceleration of the motion (a) is positive during this stage مرحله this stage. ii) The electron travels parallel to the field lines during this stage. iii) The effective فقال electric force (F) is parallel to the field lines during this stage. iv) The effective فقال electric force is given as F = e E during all stages.
{	v) The potential energy difference (ΔU) is negative.

, and	***************************************		
c)	If the distance between two charged particles is doubled ($r_{\text{final}} = 2 r_{\text{initial}}$), and the		
	charge on one of them is reduced to one-third $(\frac{1}{3})$ of its original label value		
	$(q_{\text{final}} = \frac{1}{3} q_{\text{initial}})$, the resultant electric force will be $F_{\text{final}} = \dots F_{\text{initial}}$.		
	i) 1/6 ii) 2/24 iii) 1/36 iv) 1/18 v) 1/7		
d)	A conducting sphere of radius "a", total charge $+Q$, and charge density $+\sigma$. The		
	electric field at a point just outside the sphere (at the outside surface) is $E = \dots$		
	i) $4\pi k\sigma$ ii) $kQ/2a$ iii) $\sigma/2\varepsilon_{o}$ iv) kQ^{2}/a^{2} v) σ/ε_{o}		
e)	Three charged particles are arranged on corners of a square		
	as shown in the figure. The electric field at point "p" is		
	i) upward and to the right. <i>∧</i> ii) straight to the right. →		
	iii) straight downward. \downarrow iv) zero. $+2\sqrt{2} q$		
	v) downward and to the left.		
f)	The figure represents charged sphere of total charge Q , and $\lambda = -3 \mu C/cm$		
8	wire of infinite length of uniform charge density $\lambda = -3 \ \mu C/cm$.		
	The electric field at point "P"; midway منتصف الطريق between		
	them is zero. The value of $Q = \dots$		
	i) +12 μC . ii) +6 μC . iii) -3 μC .		
	iv) - 12 μC . v) - 6 μC .		
g)	In the figure: the potential energy difference (ΔU)		
	when the electron ($e = -1.6 \times 10^{-19}C$) moves from point $A^{+0\mu C}$		
	to point B equals		
<u> </u>	i) $+05.760 \times 10^{-16} J$ ii) $-05.760 \times 10^{-16} J$ iii) $-05.760 \times 10^{-16} J$		
ł	iii) + 15.84×10 ⁻¹⁶ J iv) - 15.84×10 ⁻¹⁶ J -2 μC		
{	v) - $10.08 \times 10^{-10} J$ 4 m A		
h)	The figure represents يوضح two conducting spheres شمر "A & B" each		
Ì	of them carries - 8 nC charge. The surface area of "B" is one-third ($\frac{1}{3}$)		
Į.	that of "A". After touching them together; the number of electrons		
Ì.	$(e = -1.6 \times 10^{-19} C)$ that leave sphere "B" and move to "A" equals		
Į.	i) $+2.5 \times 10^{10}$ electron. ii) $+5.0 \times 10^{10}$ electron.		
Ş.	iii) $+7.5 \times 10^{10}$ electron. (v) zero.		
{	v) +12.5×10 ² electron.		
i)	A metallic coin عَملة Is given a negative electric charge. Its mass will		
Į.	1) remain unchanged.		
ξ.	1) decrease by an amount too small to measure directly.		
ŝ	iv) decrease measurably we use K the		
ş.	y) increase measurably		
{ -			
Ĺ			

