Menoufiya University Faculty of Engineering Shebin El-Kom Second Semester Exam. Academic Year: 2015-2016
 Department: Basic Science of Engineering Year: Preparatory year Subject/Code: Physics 1B (BES022)
Time Allowed: 3 hours
Date: 6/6/2016

Answer the Following Questions:

a) Describe and explain the magnetic force on a charged particle in a uniform; magnetic field.
b) Determine the periodic time of a charged particle is moving circular motion in a uniform magnetic field.
c) A positive charged particle has mass $2 \times 10^{-24} \mathrm{gm}$ and charge $1.6 \times 10^{-19} \mathrm{C}$ is sent into a region of uniform magnetic field oriented perpendicular to the charged particle's path. The charged particle travels at a speed $8 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$ in a circular path of radius 2 m . What is the magnitude of magnetic field?

Question 2:

a) Determine and explain the magnetic force between two parallel wires have length L, carry a current $I_{1} \& I_{2}$ and a distance " d " between them.
b) Determine the relation between magnetic permeability of a material inserted in a
solenoid and magnetic permeability of free space.
(c) Prove that the magnetic energy density stored in an inductor is directly
proportional to the square of magnetic field.
d) Determine the frequency of oscillation in $L C$-circuit.

Part 2

Question 3: Choose the correct answer(s),

a) An electric dipole is placed freely in a region known to contain a uniform electric field. After an adequate كافى time, the electric dipole moment (p)
i) points يشير parallel to the field lines.
ii) makes an angle $0 \leq \theta \leq 1 / 2 \pi$.
iii) points normal $s s_{\text {gac }}$ to the field lines.
iv) remains constant.
v) rotates anticlockwise عكس عقارب الساعة
b) An electron (e) enters a region of uniform electric field (E), after a short time ((t) it stops momentarily لحظياً. Chose the correct statement(s) (الجُمْمَلة) of the following
i) The acceleration of the motion (a) is positive during فلال this stage مرحلة.
ii) The electron travels parallel to the field lines during this stage.
iii) The effective electric force (F) is parallel to the field lines during this stage.
iv) The effective electric force is given as $F=e E$ during all stages.
v) The potential energy difference (ΔU) is negative.

Part 3

Questipnet

a) Derive an equation for the capacitance of a cylindrical capacitor.
b) Charged parallel-plate capacitor of charge $30 \mu \mathrm{C}$, plate area $A=1 \times 10^{-4} \mathrm{~m}^{2}$ and plate separation $d=2 \times 10^{-3} \mathrm{~m}$ is half filled with a dielectric material of dielectric constant $K=2$ as shown in the figure. Calculate the energy stored in this capacitor. $\varepsilon_{0}=8.85 \times 10^{-12} C^{2} / \mathrm{N}^{2} \mathrm{~m}^{2}$.

c) i) Find the equivalent capacitance of the given circuit
ii)

Calculate the charge on the capacitor $\mathrm{C}_{1}=6 \mu F$ if $V=10 V$

Quevion 5 .

(a) What is the meaning of
i) light source of power loss 100 W
ii) a wire carries a current 5 A
b) A series $A C$ circuit contains the following components: $R=150 \Omega, L=250 \mathrm{mH}$, $C=2 \mathrm{~F}$ and a source with $V_{\max }=210 \mathrm{~V}$ operating at 50 Hz . Calculate the maximum current $\left(I_{\max }\right)$ and the power factor of the circuit.
c) For the circuit shown, if $I_{2}=1 \mathrm{~A}$ calculate $I_{3}, I_{1}, I_{4}, I_{5}$ and I_{6}.

This exam measures the following ILOs

Question	Q1	Q1	Q2	Q2	Q3	Q3	Q4	Q5	02	Q3	03.	04	Q5	Q1	Q2	Q3	Q4	Q
Number	(a)	(b)	(a)	(b)	(c)	(a,b,i)	(a)	(a)	(c)	$(\mathrm{f}, \mathrm{g}$)	(d, e)	(b)	(b)	(c)	(d)	(h)	(c)	(c)
	a1-1	al-2	a2-1	a2-2	a2-1	a1-1	A1-1	a2-1	b4-1	62-1	64-1	b4-1	62-1	c9-1	c9-1	c4-3	C9-1	c4-3
Skir	Knowledge \& Understanding Skills													Professional Sk				

